Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Mol Metab ; 82: 101912, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458566

OBJECTIVE: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS: We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS: We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS: We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.


Micropeptides , Muscle, Skeletal , Animals , Female , Humans , Mice , Extracellular Matrix/metabolism , Hypertrophy/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myocytes, Smooth Muscle/metabolism
2.
Redox Biol ; 60: 102612, 2023 04.
Article En | MEDLINE | ID: mdl-36681048

BACKGROUND & AIMS: Nitric oxide bioactivity (NO) from endothelial NO synthase (eNOS) importantly contributes to the maintenance of vascular homeostasis, and reduced eNOS activity has been associated with cardiovascular disease. Emerging evidence suggests interaction(s) between red blood cells (RBCs) and the endothelium in vascular control; however, the specific role of RBC eNOS is less clear. We aimed to investigate the hypothesis that a lack of RBC eNOS induces endothelial dysfunction. METHODS & RESULTS: RBCs from global eNOS knockout (KO) and wildtype (WT) mice were co-incubated ex vivo overnight with healthy mouse aortic rings, followed by functional and mechanistic analyses of endothelium-dependent and independent relaxations. RBCs from eNOS KO mice induced endothelial dysfunction and vascular oxidative stress, whereas WT RBC did not. No differences were observed for endothelium-independent relaxations. This eNOS KO RBC-induced endothelial dysfunctional phenotype was prevented by concomitant co-incubation with reactive oxygen species scavenger (TEMPOL), arginase inhibitor (nor-NOHA), NO donor (detaNONOate) and NADPH oxidase 4 (NOX4) inhibitor. Moreover, vessels from endothelial cell-specific arginase 1 KO mice were resistant to eNOS KO-RBC-induced endothelial dysfunction. Finally, in mice aortae co-incubated with RBCs from women with preeclampsia, we observed a significant reduction in endothelial function compared to when using RBCs from healthy pregnant women or from women with uncomplicated gestational hypertension. CONCLUSIONS: RBCs from mice lacking eNOS, and patients with preeclampsia, induce endothelial dysfunction in adjacent blood vessels. Thus, RBC-derived NO bioactivity acts to prevent induction of vascular oxidative stress occurring via RBC NOX4-derived ROS in a vascular arginase-dependent manner. Our data highlight the intrinsic protective role of RBC-derived NO bioactivity in preventing the damaging potential of RBCs. This provides novel insight into the functional relationship between RBCs and the vasculature in health and cardiovascular disease, including preeclampsia.


Cardiovascular Diseases , Pre-Eclampsia , Vascular Diseases , Mice , Female , Humans , Pregnancy , Animals , Endothelium, Vascular/metabolism , Cardiovascular Diseases/metabolism , Nitric Oxide Synthase Type III/metabolism , Arginase/genetics , Arginase/metabolism , Pre-Eclampsia/metabolism , Oxidative Stress , Nitric Oxide/metabolism , Erythrocytes/metabolism
3.
J Hypertens ; 39(8): 1628-1641, 2021 08 01.
Article En | MEDLINE | ID: mdl-33657586

RATIONALE: Pre-eclampsia is a multisystem disorder associated with systemic vascular dysfunction and decreased nitric oxide (NO) bioactivity. Arginase competes with NO synthase (NOS) for l-arginine, and its upregulation may reduce NOS-derived NO formation or induce production of reactive oxygen species (ROS) via uncoupling of NOS, resulting in endothelial dysfunction. Red blood cells (RBCs) have emerged as key players in NO homeostasis via their interactions with the endothelium. Studies have demonstrated that abnormal RBC arginase function in patients with diabetes contributes to oxidative stress and endothelial dysfunction. AIM: The aim of the study was to investigate if reduced NO bioavailability and increased ROS in pre-eclampsia is mediated via RBC-dependent mechanisms. METHODS: In this translational study, plasma and RBCs were isolated from gestationally matched pre-eclamptic and healthy pregnant women and co-incubated overnight with mouse aortas for vascular reactivity studies. NO bioactivity, that is, nitrate, nitrite and cGMP, was assessed in plasma. Arginase activity and expression were analysed in RBCs. RESULTS: Plasma markers of NO homeostasis and signalling were decreased in pre-eclamptic women vs. healthy pregnant women. Co-incubation of aorta with pre-eclamptic RBCs, but not healthy pregnant RBCs, induced endothelial dysfunction, which was ameliorated by pharmacological inhibition of arginase, scavenging of ROS, and by nitrite treatment. This pathological vascular phenotype was not observed following incubation with pre-eclamptic plasma. Arginase expression and activity in RBCs were increased in pre-eclamptic vs. healthy pregnant women and was associated with pre-eclampsia severity. Pre-eclamptic RBC-induced endothelial dysfunction was not because of increased haemolysis/cell-free haemoglobin. CONCLUSION: This study demonstrates a novel role of the RBC in mediating the endothelial dysfunction associated with pre-eclampsia through arginase-dependent and oxidative stress-dependent mechanisms. Targeting of RBC arginase may provide a novel treatment modality for pre-eclampsia.


Pre-Eclampsia , Animals , Arginase , Endothelium, Vascular , Erythrocytes , Female , Humans , Mice , Nitric Oxide , Nitric Oxide Synthase , Pregnancy
4.
Nitric Oxide ; 97: 48-56, 2020 04 01.
Article En | MEDLINE | ID: mdl-32032718

BACKGROUND/PURPOSE: Unhealthy dietary habits contribute to the increasing incidence of metabolic syndrome and type 2 diabetes (T2D), which is accompanied by oxidative stress, compromised nitric oxide (NO) bioavailability and increased cardiovascular risk. Apart from lifestyle changes, biguanides such as metformin are the first-line pharmacological treatment for T2D. Favourable cardiometabolic effects have been demonstrated following dietary nitrate supplementation to boost the nitrate-nitrite-NO pathway. Here we aim to compare the therapeutic value of inorganic nitrate and metformin alone and their combination in a model of cardiometabolic disease. EXPERIMENTAL APPROACH: Mice were fed control or high fat diet (HFD) for 7 weeks in combination with the NO synthase (NOS) inhibitor l-NAME to induce metabolic syndrome. Simultaneously, the mice were treated with vehicle, inorganic nitrate, metformin or a combination of nitrate and metformin in (drinking water). Cardiometabolic functions were assessed in vivo and tissues were collected/processed for analyses. KEY RESULTS: HFD + L-NAME was associated with cardiometabolic dysfunction, compared with controls, as evident from elevated blood pressure, endothelial dysfunction, impaired insulin sensitivity and compromised glucose clearance as well as liver steatosis. Both nitrate and metformin improved insulin/glucose homeostasis, whereas only nitrate had favourable effects on cardiovascular function and steatosis. Mechanistically, metformin and nitrate improved AMPK signalling, whereas only nitrate attenuated oxidative stress. Combination of nitrate and metformin reduced HbA1c and trended to further increase AMPK activation. CONCLUSION/IMPLICATIONS: Nitrate and metformin had equipotent metabolic effects, while nitrate was superior regarding protection against cardiovascular dysfunction and liver steatosis. If reproduced in future clinical trials, these findings may have implications for novel nutrition-based strategies against metabolic syndrome, T2D and associated complications.


Cardiovascular Diseases/drug therapy , Disease Models, Animal , Metformin/therapeutic use , Nitrates/therapeutic use , Administration, Oral , Animals , Cardiovascular Diseases/metabolism , Diet, High-Fat/adverse effects , Enzyme Inhibitors/pharmacology , Male , Metformin/administration & dosage , Metformin/metabolism , Mice , Mice, Inbred C57BL , NG-Nitroarginine Methyl Ester/pharmacology , Nitrates/administration & dosage , Nitrates/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism
5.
Cardiovasc Res ; 116(3): 619-632, 2020 03 01.
Article En | MEDLINE | ID: mdl-31382275

AIMS: Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is suggested to increase the risk for cardiovascular disease. How PCOS may lead to adverse cardiac outcomes is unclear and here we hypothesized that prenatal exposure to dihydrotestosterone (DHT) and/or maternal obesity in mice induce adverse metabolic and cardiac programming in female offspring that resemble the reproductive features of the syndrome. METHODS AND RESULTS: The maternal obese PCOS phenotype was induced in mice by chronic high-fat-high-sucrose consumption together with prenatal DHT exposure. The prenatally androgenized (PNA) female offspring displayed cardiac hypertrophy during adulthood, an outcome that was not accompanied by aberrant metabolic profile. The expression of key genes involved in cardiac hypertrophy was up-regulated in the PNA offspring, with limited or no impact of maternal obesity. Furthermore, the activity of NADPH oxidase, a major source of reactive oxygen species in the cardiovascular system, was down-regulated in the PNA offspring heart. We next explored for early transcriptional changes in the heart of newly born PNA offspring, which could account for the long-lasting changes observed in adulthood. Neonatal PNA hearts displayed an up-regulation of transcription factors involved in cardiac hypertrophic remodelling and of the calcium-handling gene, Slc8a2. Finally, to determine the specific role of androgens in cardiovascular function, female mice were continuously exposed to DHT from pre-puberty to adulthood, with or without the antiandrogen flutamide. Continuous exposure to DHT led to adverse left ventricular remodelling, and increased vasocontractile responses, while treatment with flutamide partly alleviated these effects. CONCLUSION: Taken together, our results indicate that intrauterine androgen exposure programmes long-lasting heart remodelling in female mouse offspring that is linked to left ventricular hypertrophy and highlight the potential risk of developing cardiac dysfunction in daughters of mothers with PCOS.


Dihydrotestosterone , Hypertrophy, Left Ventricular/etiology , Polycystic Ovary Syndrome/chemically induced , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left , Ventricular Remodeling , Animals , Diet, High-Fat , Dietary Sucrose , Disease Models, Animal , Energy Metabolism , Female , Gene Expression Regulation , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Maternal Exposure , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Obesity/complications , Pregnancy , Sex Factors , Sexual Development , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
6.
Proc Natl Acad Sci U S A ; 116(1): 217-226, 2019 01 02.
Article En | MEDLINE | ID: mdl-30559212

Advanced age and unhealthy dietary habits contribute to the increasing incidence of obesity and type 2 diabetes. These metabolic disorders, which are often accompanied by oxidative stress and compromised nitric oxide (NO) signaling, increase the risk of adverse cardiovascular complications and development of fatty liver disease. Here, we investigated the therapeutic effects of dietary nitrate, which is found in high levels in green leafy vegetables, on liver steatosis associated with metabolic syndrome. Dietary nitrate fuels a nitrate-nitrite-NO signaling pathway, which prevented many features of metabolic syndrome and liver steatosis that developed in mice fed a high-fat diet, with or without combination with an inhibitor of NOS (l-NAME). These favorable effects of nitrate were absent in germ-free mice, demonstrating the central importance of host microbiota in bioactivation of nitrate. In a human liver cell line (HepG2) and in a validated hepatic 3D model with primary human hepatocyte spheroids, nitrite treatment reduced the degree of metabolically induced steatosis (i.e., high glucose, insulin, and free fatty acids), as well as drug-induced steatosis (i.e., amiodarone). Mechanistically, the salutary metabolic effects of nitrate and nitrite can be ascribed to nitrite-derived formation of NO species and activation of soluble guanylyl cyclase, where xanthine oxidoreductase is proposed to mediate the reduction of nitrite. Boosting this nitrate-nitrite-NO pathway results in attenuation of NADPH oxidase-derived oxidative stress and stimulation of AMP-activated protein kinase and downstream signaling pathways regulating lipogenesis, fatty acid oxidation, and glucose homeostasis. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against liver steatosis associated with metabolic dysfunction.


AMP-Activated Protein Kinases/metabolism , Fatty Liver/prevention & control , NADPH Oxidases/antagonists & inhibitors , Nitrates/pharmacology , Nitrites/pharmacology , Animals , Enzyme Activation/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Nitrates/administration & dosage , Nitric Oxide/metabolism , Nitrites/administration & dosage
...